Kunnossapidon analytiikka ja ennustaminen
Kunnossapidon analytiikka ja ennustaminen
Kunnossapito, kuten kaikki muutkin liiketoiminnan osa-alueet, eli tuotanto, talous- ja henkilöstöhallinto, myynti sekä markkinointi ovat kokeneet jatkuvaa muokkautumista sen hetken ympäristöön sekä vallitseviin teknologioihin ja johtamisfilosofioihin. Näin on käynyt myös oman osaamisalueeni, eli kunnossapidon, suhteen. Olen kokenut oman työurani aikana muutaman tusinan verran erilaisia johtamisoppeja ja näkökulmia.
Ennakkohuolto oli ’hypeä’ silloin, kun aloitin työurani ennakkohuollon konsulttina. Yritykset olivat valmiita maksamaan maltaita matriisikirjoittimen tulostamista ennakkohuollon työlistoista. Ennakkohuollon yleistymistä edelsi vallitsevana trendinä korjaava kunnossapito höystettynä voitelulla ja rasvauskierroksilla. Ajan kuluessa yrityksissä yleistyivät sellaiset tehtävät kuten ennakkohuollon tarkastajat, asentajat, insinöörit ja päälliköt.
Aistihavaintojen pohjalta tehtyjen tarkastusten ja ennakkohuollon jälkeen kehittyi erilaisia tekniikoita kunnonvalvontaan, kuten iskusysäysmittaus laakereille (SPM), stroboskooppi, lämpökuvaukset, öljyanalyysit sekä laitteiden ja laakereiden tärinämittaukset. Tämän evoluution loppuvaiheessa joku keksi vetää mittausjohdot valvomoon saakka, jolloin ryhdyttiin puhumaan kunnonvalvonnasta (condition monitoring).
Ennakkohuolto oli ’hypeä’ silloin, kun aloitin työurani ennakkohuollon konsulttina. Yritykset olivat valmiita maksamaan maltaita matriisikirjoittimen tulostamista ennakkohuollon työlistoista. Ennakkohuollon yleistymistä edelsi vallitsevana trendinä korjaava kunnossapito höystettynä voitelulla ja rasvauskierroksilla. Ajan kuluessa yrityksissä yleistyivät sellaiset tehtävät kuten ennakkohuollon tarkastajat, asentajat, insinöörit ja päälliköt.
Aistihavaintojen pohjalta tehtyjen tarkastusten ja ennakkohuollon jälkeen kehittyi erilaisia tekniikoita kunnonvalvontaan, kuten iskusysäysmittaus laakereille (SPM), stroboskooppi, lämpökuvaukset, öljyanalyysit sekä laitteiden ja laakereiden tärinämittaukset. Tämän evoluution loppuvaiheessa joku keksi vetää mittausjohdot valvomoon saakka, jolloin ryhdyttiin puhumaan kunnonvalvonnasta (condition monitoring).
Data todelliseen hyötykäyttöön
Oman kasvavan mielenkiintoni kohteena on ollut viimeisen vuoden aikana kunnossapidon ennustaminen pohjautuen online-dataan ja laitteen tapahtumahistoriaan nykyajan suomin analyyttisin menetelmin. Itse haluan puhua nimenomaan kunnossapidon ennustamisesta (maintenance prediction, forecasting) enkä ennakoivasta analytiikasta, koska kunnossapidon termein ennakkohuoltoa ja ehkäisevää kunnossapitoa tehtiin alalla jo 30 vuotta sitten.
Kunnossapidon tavoitteet eivät kuitenkaan ole ajan saatossa muuttuneet. Input-output-malli toimii edelleen oikein hyvin, vaikka kunnossapidon painotukset muuttuvat markkinatilanteen mukaan. Kun markkinat eivät vedä käytettävyyden tavoitteet voivat olla matalammat, sillä myytävä tuotanto saadaan kyllä tehtyä, vaikka yksi tuotantolinja olisikin seisokissa pitemmän aikaa. Lama-aikana kustannusten merkitys korostuu, jolloin toimintoja ulkoistetaan ja säästöjä haetaan esimerkiksi ennakkohuoltoa keventämällä. Korkeasuhdanteessa korostuvat käytettävyys, seisokkien lyhyys, korkeat nopeudet sekä nettohyötysuhteet. Jos taas tuote tai sen kunnossapito myydään tai ostetaan jatkuvana palveluna, voivat kunnossapidon tavoitteet silloin olla erilaiset.
Kunnossapidolle on tullut myös uusia tehtäviä ja vaatimuksia, jotka liittyvät ympäristöön, työturvallisuuteen ja yrityksen brändiin.
Kunnossapidon ennustaminen, eli käytännössä laitteen seuraavan vikaantumisajan-kohdan ja mahdollisesti myös vikaantumisen syyn ennustaminen, ei ole enää rakettitiedettä. Tehtiinhän ensimmäinen kuukävelykin jo yli 50 vuotta sitten. Laitteen tapahtumatietokannalla päästään jo alkuun ja mittaustuloksilla (IoT) voidaan parantaa merkittävästi ennustamisen osuvuutta sekä laatua.
Oman kasvavan mielenkiintoni kohteena on ollut viimeisen vuoden aikana kunnossapidon ennustaminen pohjautuen online-dataan ja laitteen tapahtumahistoriaan nykyajan suomin analyyttisin menetelmin. Itse haluan puhua nimenomaan kunnossapidon ennustamisesta (maintenance prediction, forecasting) enkä ennakoivasta analytiikasta, koska kunnossapidon termein ennakkohuoltoa ja ehkäisevää kunnossapitoa tehtiin alalla jo 30 vuotta sitten.
Kunnossapidon tavoitteet eivät kuitenkaan ole ajan saatossa muuttuneet. Input-output-malli toimii edelleen oikein hyvin, vaikka kunnossapidon painotukset muuttuvat markkinatilanteen mukaan. Kun markkinat eivät vedä käytettävyyden tavoitteet voivat olla matalammat, sillä myytävä tuotanto saadaan kyllä tehtyä, vaikka yksi tuotantolinja olisikin seisokissa pitemmän aikaa. Lama-aikana kustannusten merkitys korostuu, jolloin toimintoja ulkoistetaan ja säästöjä haetaan esimerkiksi ennakkohuoltoa keventämällä. Korkeasuhdanteessa korostuvat käytettävyys, seisokkien lyhyys, korkeat nopeudet sekä nettohyötysuhteet. Jos taas tuote tai sen kunnossapito myydään tai ostetaan jatkuvana palveluna, voivat kunnossapidon tavoitteet silloin olla erilaiset.
Kunnossapidolle on tullut myös uusia tehtäviä ja vaatimuksia, jotka liittyvät ympäristöön, työturvallisuuteen ja yrityksen brändiin.
Kunnossapidon ennustaminen, eli käytännössä laitteen seuraavan vikaantumisajan-kohdan ja mahdollisesti myös vikaantumisen syyn ennustaminen, ei ole enää rakettitiedettä. Tehtiinhän ensimmäinen kuukävelykin jo yli 50 vuotta sitten. Laitteen tapahtumatietokannalla päästään jo alkuun ja mittaustuloksilla (IoT) voidaan parantaa merkittävästi ennustamisen osuvuutta sekä laatua.
Minulta on kysytty miten tällainen siirto toiminnallisesti ja organisatorisesti pitäisi hoitaa. Oma suositukseni on, että kunnossapidon ennustaminen otetaan aluksi nykyisen toiminnan rinnalle ja seurataan millä todennäköisyydellä koneoppimismalli kykenee ennustamaan seuraavan vikaantumisen. Sitten kun on saatu lisää tietoa, voidaan suunnitella kunnossapidon toimintamalleihin mahdollisia muutoksia ja pohtia esimerkiksi aistihavaintotarkastusten keventämistä tai harventamista.
Kunnossapidon ennustaminen on mielestäni verrattavissa sään ennustamiseen. Säänkin ennustaminen on erittäin monimutkaista ja työlästä, mutta sääennusteen lukijana voin kuitenkin kohtuullisen turvallisin mielin suunnitella omat puuhani säätiedotusten pohjalta tuntematta itse prosessia tarkemmin.
Mitä yritys voi saavuttaa lähtiessään kunnossapidon ennustamisen polulle?
Itse ajattelen, että ennustamisen myötä meille avautuu aivan toinen ikkuna tai kokonaisvaltainen näkökulma päivittäiseen kunnossapitoon. Laitekohtainen ennustettu vikaantumishetki tai kuntoindeksi voidaan kaiuttaa kunnossapitojärjestelmän laitetietoihin tai vaikka asentajan mobiililaitteeseen kentälle avustamaan päätöksentekoa. Ennusta-minen parantaa varaosalogistiikan taloudellisuutta ja toimintavarmuutta sekä helpottaa resurssien allokointia. Monessa kohteessa vaaditaan nykyisin kunnossapidon erikois-osaamista, eikä sitä ole välttämättä helposti ja nopeasti saatavilla.
Päätehtävänä tietysti on puutekustannusten eli menetetyn katteen minimointi tai lasku-suhdanteen ajan kunnossapidon kustannusten ja panostusten ajaminen pohjiin. Se pitää kuitenkin tehdä niin, että ollaan tietoisia käytettävyyteen ja käyttövarmuuteen liittyvistä riskeistä.
Kunnossapito ja tuotanto vaikuttavat yhdessä merkittävästi tuotteiden laatuun ja hylyn määrään, kuten hyvin tiedämme. Kunnossapidon ennustaminen voi toimialasta riippuen parantaa ratkaisevasti tuotantolinjojen laaduntuottokykyä.
Miten liikkeelle?
MaxiPoint pyrkii standardoimaan alkuvaiheen analyysityötä käyttämällä muun muassa valmiita kunnossapidon dataan soveltuvia algoritmeja sekä käytäntöjä datan seulonnassa. Kunnossapito on meillä ainoa tarkastelukulma asiakkaan kunnossapitodataan ja voimme keskittyä täysillä siihen. Voimme toki pitää alkuun työpajojakin, mutta pääsemme alkuun liikkeelle asiakkaan datalla. Pyrimme rakentamaan koneoppimismallin, joka ennustaa laitekohtaisesti seuraavaa vikaa tai häiriötilannetta.
Voimme tarjota palveluna tai jatkuvana palveluna mallien ylläpidon ja kehittämisen sekä tarvittavat pilvipohjaiset alustat. Tunnemme hyvin IBM Maximon, mutta kunnossapidon datan samankaltaisuudesta johtuen kunnossapidon ennustamisen mallit voidaan ottaa käyttöön myös muissa kunnossapitojärjestelmissä.
Yleensä asiakas toteaa, että data ei ole oikein hyvää. Siitä ei kuitenkaan kannata pelästyä. Analyysityössä voimme antaa myös parannusehdotuksia kunnossapitodatan laatuun ja sisältöön. Silmämääräinen laitetarkastus ei paranna laitteen kuntoa, mutta jos saadaan myös tieto varaosien käytöstä, niin korrelaatio laitteen parantuneeseen kuntoon on jo suuri.
Kunnossapidon ennustaminen on mielestäni verrattavissa sään ennustamiseen. Säänkin ennustaminen on erittäin monimutkaista ja työlästä, mutta sääennusteen lukijana voin kuitenkin kohtuullisen turvallisin mielin suunnitella omat puuhani säätiedotusten pohjalta tuntematta itse prosessia tarkemmin.
Mitä yritys voi saavuttaa lähtiessään kunnossapidon ennustamisen polulle?
Itse ajattelen, että ennustamisen myötä meille avautuu aivan toinen ikkuna tai kokonaisvaltainen näkökulma päivittäiseen kunnossapitoon. Laitekohtainen ennustettu vikaantumishetki tai kuntoindeksi voidaan kaiuttaa kunnossapitojärjestelmän laitetietoihin tai vaikka asentajan mobiililaitteeseen kentälle avustamaan päätöksentekoa. Ennusta-minen parantaa varaosalogistiikan taloudellisuutta ja toimintavarmuutta sekä helpottaa resurssien allokointia. Monessa kohteessa vaaditaan nykyisin kunnossapidon erikois-osaamista, eikä sitä ole välttämättä helposti ja nopeasti saatavilla.
Päätehtävänä tietysti on puutekustannusten eli menetetyn katteen minimointi tai lasku-suhdanteen ajan kunnossapidon kustannusten ja panostusten ajaminen pohjiin. Se pitää kuitenkin tehdä niin, että ollaan tietoisia käytettävyyteen ja käyttövarmuuteen liittyvistä riskeistä.
Kunnossapito ja tuotanto vaikuttavat yhdessä merkittävästi tuotteiden laatuun ja hylyn määrään, kuten hyvin tiedämme. Kunnossapidon ennustaminen voi toimialasta riippuen parantaa ratkaisevasti tuotantolinjojen laaduntuottokykyä.
Miten liikkeelle?
MaxiPoint pyrkii standardoimaan alkuvaiheen analyysityötä käyttämällä muun muassa valmiita kunnossapidon dataan soveltuvia algoritmeja sekä käytäntöjä datan seulonnassa. Kunnossapito on meillä ainoa tarkastelukulma asiakkaan kunnossapitodataan ja voimme keskittyä täysillä siihen. Voimme toki pitää alkuun työpajojakin, mutta pääsemme alkuun liikkeelle asiakkaan datalla. Pyrimme rakentamaan koneoppimismallin, joka ennustaa laitekohtaisesti seuraavaa vikaa tai häiriötilannetta.
Voimme tarjota palveluna tai jatkuvana palveluna mallien ylläpidon ja kehittämisen sekä tarvittavat pilvipohjaiset alustat. Tunnemme hyvin IBM Maximon, mutta kunnossapidon datan samankaltaisuudesta johtuen kunnossapidon ennustamisen mallit voidaan ottaa käyttöön myös muissa kunnossapitojärjestelmissä.
Yleensä asiakas toteaa, että data ei ole oikein hyvää. Siitä ei kuitenkaan kannata pelästyä. Analyysityössä voimme antaa myös parannusehdotuksia kunnossapitodatan laatuun ja sisältöön. Silmämääräinen laitetarkastus ei paranna laitteen kuntoa, mutta jos saadaan myös tieto varaosien käytöstä, niin korrelaatio laitteen parantuneeseen kuntoon on jo suuri.
Ota yhteyttä! Kerron mielelläni lisää miten voisimme olla avuksi.
Jukka Plattonen
Ps. Olemme muuten mukana IBM Think tapahtumassa 29.10.2019 Messukeskuksessa. Tule rohkeasti juttelemaan aiheesta!
Ilmoittaudu mukaan tapahtumaan: https://www.ibm.com/fi-en/events/think-summit
Jukka Plattonen
Ps. Olemme muuten mukana IBM Think tapahtumassa 29.10.2019 Messukeskuksessa. Tule rohkeasti juttelemaan aiheesta!
Ilmoittaudu mukaan tapahtumaan: https://www.ibm.com/fi-en/events/think-summit
Lisätietoja
Tagit
Liiketoimintaprosessi
Hankinta | |
Laatu, turvallisuus ja ympäristö | |
Logistiikka | |
Taloushallinto | |
Tietohallinto | |
Toiminnanohjaus ERP | |
Tuotanto | |
Tuotekehitys ja suunnittelu |
Erikoisosaaminen
Analytiikka | |
IoT | |
Tekoäly (AI) ja koneoppiminen |
Toimialakokemus
Kiinteistöala | |
Prosessiteollisuus | |
Raaka-aineet ja energia | |
Valmistava teollisuus |
Teknologia
IBM | |
Open source |
Tarjonnan tyyppi
Huolto ja korjaus | |
Johtamistyö | |
Konsultointi | |
Laitteet | |
Toteutustyö | |
Valmisohjelmisto |
Omat tagit
Kunnossapidon ennustaminen
Kunnossapidon analytiikka
MaxiPoint - Asiantuntijat ja yhteyshenkilöt
Premium-profiilia ei ole aktivoitu. Aktivoi premium-profiili näyttääksesi tässä lisäämäsi 1 asiantuntijaa.
MaxiPoint - Muita referenssejä
MaxiPoint - Muita bloggauksia
It- ja ohjelmistoalan työpaikat
- Laura - Development Manager, Operations
- Laura - ICT-asiantuntija
- Laura - IT Manager
- Nordea - Senior Fullstack Developer
- Innofactor Oyj - Business Architect
- Laura - Cloud Engineer
- Laura - UX/UI Designer
Premium-asiakkaiden viimeisimmät referenssit
- SD Worx - Kehitystyö SD Worxin kanssa takaa Clas Ohlsonille parhaat palkanmaksun prosessit kasvun tiellä
- Digiteam Oy - Case Esperi Care Oy: Ketterä kumppanuus vei Esperin verkkosivu-uudistuksen maaliin sujuvasti ja aikataulussa
- Kisko Labs Oy - Howspace Hub - Mukautuva oppimisen hallintajärjestelmä kasvaviin oppimisalustavaatimuksiin
- Kisko Labs Oy - Sanoma Pro: Multimediasisältöjen hallinnan uudistaminen
- Kisko Labs Oy - Svean helppokäyttöinen palvelu asiakkaan verkko-ostosten hallintaan
- Kisko Labs Oy - Yhtenäinen käyttöliittymä luovien alojen ammattilaisille
- Codemate - Digitaalisen murroksen nopeuttaminen Flutterin avulla
Tapahtumat & webinaarit
- 27.11.2024 - Green ICT -ekosysteemitapaaminen III: Ohjelmistojärjestelmien virrankulutuksen mittaaminen ja kasvihuonepäästöjen arviointi
- 27.11.2024 - Digitaalisen asiakaskokemuksen uusi aikakausi
- 28.11.2024 - Webinaari: Keskity myyntityön laatuun!
- 28.11.2024 - Copilot-webinaari – Mielekkäämpää tietotyötä turvallisesti
- 04.12.2024 - Kuinka oikea matka- ja kululaskujärjestelmä tehostaa prosesseja?
- 05.12.2024 - Green ICT VICTIS -hankkeen kick off -tilaisuus
- 15.01.2025 - Datavastuullisuuden valmennus: hanki valmiudet vastuulliseen datan ja tekoälyn hyödyntämiseen
Premium-asiakkaiden viimeisimmät bloggaukset
- Zimple Oy - Pipedrive vai Hubspot? Kumpi kannattaa valita?
- SC Software Oy - Jatkuvat palvelut – asiakaslähtöistä kumppanuutta projekteista ylläpitoon
- Timeless Technology - Ohjelmoitavat logiikat (PLC): Ratkaisevat työkalut automaatioon ControlByWebiltä.
- Kisko Labs Oy - Heroku: Ohjelmistokehittäjän ykköstyökalu skaalautuvien sovellusten rakentamiseen
- SD Worx - Näin luot vakuuttavan Business Casen palkkahallinnon ulkoistukselle
- Timeless Technology - Kyberriskien tunnistaminen Profitap IOTA verkkoanalysaattorin avulla.
- GidiUp Oy - Ai hitto -päivä: Kun sesonki pääsee taas yllättämään
Digitalisaatio & innovaatiot blogimediaBlogimediamme käsittelee tulevaisuuden liiketoimintaa, digitaalisia innovaatioita ja internet-ajan ilmiöitä |