Hae it-yrityksiä
osaamisalueittain:

Asiakkuudenhallinta CRM BI ja raportointi HR Tuotekehitys ja suunnittelu Toiminnanohjaus ERP Taloushallinto Markkinointi Webkehitys Mobiilikehitys Käyttöliittymäsuunnittelu Tietoturva Verkkokaupparatkaisut Ohjelmistokehitys Integraatiot Pilvipalvelut / SaaS Tekoäly (AI) ja koneoppiminen Lisätty todellisuus ja VR Paikkatieto GIS IoT Microsoft SAP IBM Salesforce Amazon Web Services Javascript React PHP WordPress Drupal

Hadoop suorituskyky-testaus

Bloggaus


Situation:
The cloud infrastructure provider turned to Altoros to do independent performance tests on their virtual machines and provide recommendations on how to make the system more efficient. The results of our assessment revealed that the system’s performance was in fact 20-30% higher than the results provided by the customer. Our engineers also drew up a list of recommendations on how to improve the system’s efficiency and gain competitive advantage.

Challenge:
The customer reported that the in-house tests of the cluster demonstrated that the system can process 1TB of data in 16 minutes and 30 seconds. A standard Hadoop distribution was deployed on 100 Red Hat Linux virtual machines. Each had a double core CPU, 10GB of RAM, and 6 TB of disk space. Altoros’s engineers had to replicate tests and check the results.

Solution:
Altoros tested both Linux and custom OS clusters in the customer’s public cloud according to such parameters as:

- block size
- gzip and LZO compression
- the number of mappers and reducers

Linux clusters demonstrated similar results with enabled and disabled gzip and LZO compression. However, when LZO compression was enabled on the custom OS cluster, its performance improved by 20%. Changing the number and ratios of Map and Reduce tasks (from three to six) during query processing had little effect on the Linux cluster while the custom OS cluster demonstrated better performance with six map tasks.

We also analyzed how much time was spent on completing each task of Map and Reduce jobs for Linux cluster. We performed profiling with Starfish which showed that most time was spent in a shuffle phase when I/O increased. The test was carried out using 100 GB of TeraSort data.

Outcome:
According to Altoros’s tests, a virtual machine with Ubuntu Linux installed processed 1 TB of TeraSort test data in 13.65 minutes, which is 1.2 times faster than in the customer’s test results. Featuring enhanced CPU bursting and improved disk input/output speed, virtual machines with custom OS installed were able to complete the same task in 6 minutes, which is 2.75 times faster than the results demonstrated during the initial benchmarking.

The tests revealed that non-optimized Linux machines become unstable, if a cluster exceeds a certain size. The reports, instructions, and scripts provided by Altoros can be later used by the customer’s team to replicate the test results or to improve the system’s stability.

For further info:

Pinterest
Altoros Finland Oy logo

Lisätietoja

Yritysprofiili Altoros Finland kotisivut

Tagit

Jos tarjontatagi on sininen, pääset klikkaamalla sen kuvaukseen

Liiketoimintaprosessi

Tietohallinto
Tuotanto

Erikoisosaaminen

Arkkitehtuuri
It-infra loppukäyttäjäpalvelut
It-infrapalvelut
Palvelin- ja kapasiteettipalvelut

Toimialakokemus

IT

Teknologia

Linux
Open source

Tarjonnan tyyppi

Konsultointi
Toteutustyö

Omat tagit

Ruby
Altoros
Hadoop
Ubuntu

Siirry yrityksen profiiliin Altoros Finland kotisivut Yrityshaku Referenssihaku Julkaisuhaku

Altoros Finland - Asiantuntijat ja yhteyshenkilöt

Altoros Finland - Muita referenssejä

Altoros Finland - Muita bloggauksia

Digitalisaatio & innovaatiot blogimedia

Blogimediamme käsittelee tulevaisuuden liiketoimintaa, digitaalisia innovaatioita ja internet-ajan ilmiöitä

Etusivu Yrityshaku Pikahaku Referenssihaku Julkaisuhaku Blogimedia